Hutch++: Optimal Stochastic Trace Estimation

Raphael A. Meyer¹

Cameron Musco² Christopher Musco¹ David P. Woodruff³

¹New York University

²University of Massachusetts Amherst

³Carnegie Mellon University

Introduction and Overview

Trace Estimation

Trace Estimation

• Goal: Estimate trace of $n \times n$ matrix A:

$$\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \boldsymbol{A}_{ii} = \sum_{i=1}^{n} \lambda_i$$

- In Downstream Applications, A is not stored in memory.
- Instead, \boldsymbol{B} is in memory and $\boldsymbol{A} = f(\boldsymbol{B})$:

No. Triangles | Estrada Index | Log-Determinant
$$\operatorname{tr}(\frac{1}{6}\boldsymbol{B}^3)$$
 | $\operatorname{tr}(e^{\boldsymbol{B}})$ | $\operatorname{tr}(\ln(\boldsymbol{B}))$

- Computing $\mathbf{A} = \frac{1}{6}\mathbf{B}^3$ takes $O(n^3)$ time
- Computing $\mathbf{A}\mathbf{x} = \frac{1}{6}\mathbf{B}(\mathbf{B}(\mathbf{B}\mathbf{x}))$ takes $O(n^2)$ time
- If A = f(B), then we can often compute Ax quickly

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

Given access to a $n \times n$ matrix \boldsymbol{A} only through a Matrix-Vector Multiplication Oracle:

$$\mathbf{x} \stackrel{input}{\Longrightarrow} \mathsf{oracle} \stackrel{output}{\Longrightarrow} oldsymbol{A} \mathbf{x}$$

e.g. Krylov Methods, Sketching, Streaming, . . .

Implicit Matrix Trace Estimation:

Estimate $tr(\mathbf{A})$ with as few Matrix-Vector products $A\mathbf{x}_1,\ldots,A\mathbf{x}_m$ as possible:

$$|\tilde{\operatorname{tr}}(\boldsymbol{A}) - \operatorname{tr}(\boldsymbol{A})| \le \varepsilon \operatorname{tr}(\boldsymbol{A})$$

Our Contributions

For PSD A, we show $\Theta(\frac{1}{\epsilon})$ products are <u>necessary and sufficient</u>. Prior work used $O(\frac{1}{\varepsilon^2})$ products.

Hutch++ Algorithm:

- Input: Number of matrix-vector queries m, matrix \boldsymbol{A}
- 1. Sample $S \in \mathbb{R}^{d imes \frac{m}{3}}$ and $G \in \mathbb{R}^{d imes \frac{m}{3}}$ with i.i.d. $\{+1, -1\}$ entries
- 2. Compute $Q = \operatorname{qr}(AS)$
- 3. Return $\operatorname{tr}(\boldsymbol{Q}^T\boldsymbol{A}\boldsymbol{Q}) + \frac{3}{m}\operatorname{tr}(\boldsymbol{G}^T(\boldsymbol{I} \boldsymbol{Q}\boldsymbol{Q}^{\mathsf{T}})\boldsymbol{A}(\boldsymbol{I} \boldsymbol{Q}\boldsymbol{Q}^{\mathsf{T}})\boldsymbol{G})$

Main Theorem and Context

Prior Work: Hutchinson's Estimator

Hutchinson's Estimator:

• If $\mathbf{x} \sim \mathcal{N}(0, \mathbf{I})$, then

$$\mathbb{E}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = \operatorname{tr}(\mathbf{A}) \qquad \operatorname{Var}[\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = \|\mathbf{A}\|_F^2$$

• Hutchinson's Estimator: $H_\ell(\boldsymbol{A}) := \frac{1}{\ell} \sum_{i=1}^\ell \mathbf{x}_i^\intercal \boldsymbol{A} \mathbf{x}_i$

$$\mathbb{E}[H_{\ell}(\boldsymbol{A})] = \operatorname{tr}(\boldsymbol{A}) \qquad \operatorname{Var}[H_{\ell}(\boldsymbol{A})] = \frac{1}{\ell} \|\boldsymbol{A}\|_F^2$$

• For $\mathbf{A} \succeq 0$, we have $\|\mathbf{A}\|_F \leq \operatorname{tr}(\mathbf{A})$, so that

$$\begin{aligned} |\mathrm{H}_{\ell}(\boldsymbol{A}) - \mathrm{tr}(\boldsymbol{A})| &\leq O(\frac{1}{\sqrt{\ell}}) \|\boldsymbol{A}\|_F \\ &\leq O(\frac{1}{\sqrt{\ell}}) \, \mathrm{tr}(\boldsymbol{A}) \\ &= \varepsilon \, \mathrm{tr}(\boldsymbol{A}) \end{aligned} \qquad \text{(Chebyshev Ineq.)}$$

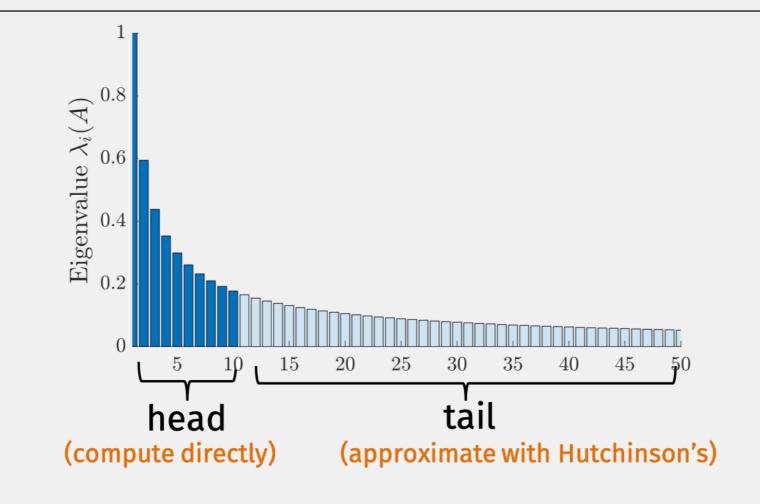
$$(\|\boldsymbol{A}\|_F \leq \mathrm{tr}(\boldsymbol{A}))$$

$$(\ell = O(\frac{1}{\varepsilon^2}))$$

- This analysis is only tight if $\|A\|_F \approx \operatorname{tr}(A)!$
- $\|A\|_F \approx \operatorname{tr}(A)$ only if A's eigenvalues are nearly sparse!

If A is hard for the Hutchinson estimator, then the sum of the top k eigenvalues represents most of tr(A).

Core Intuition



- Find a good rank-k approximation \boldsymbol{A}_k
- Notice that $\operatorname{tr}(\boldsymbol{A}) = \operatorname{tr}(\tilde{\boldsymbol{A}}_k) + \operatorname{tr}(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$
- Compute $\operatorname{tr}(\boldsymbol{A}_k)$ exactly
- 4. Return Hutch++ $(\boldsymbol{A}) := \operatorname{tr}(\tilde{\boldsymbol{A}}_k) + H_\ell(\boldsymbol{A} \tilde{\boldsymbol{A}}_k)$

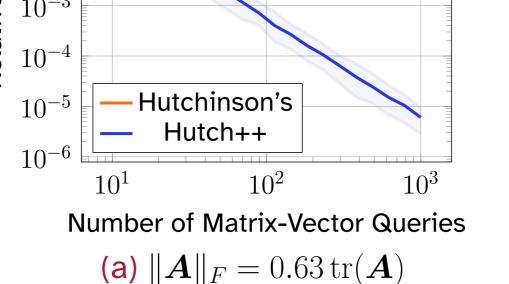
Theorem: If $k = \ell = O(\frac{1}{\varepsilon})$, then $|\text{Hutch++}(\mathbf{A}) - \text{tr}(\mathbf{A})| \le \varepsilon \operatorname{tr}(\mathbf{A})$

Fundamental Rate: $|\text{Hutch++}(\boldsymbol{A}) - \text{tr}(\boldsymbol{A})| \leq O(\frac{1}{\ell}) ||\boldsymbol{A} - \boldsymbol{A}_k||_F$

Conclusions

Experiments

Fast Eig. Decay



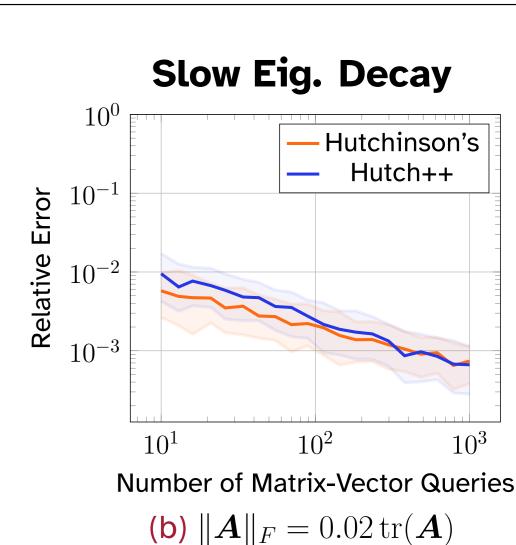


Figure 1. When $\|A\|_F \approx \operatorname{tr}(A)$, A has quickly decaying eigenvalues, and Hutch++ is much faster than H_{ℓ} .

Extensions Et Cetera

Lower Bounds

• All algorithms must use $\Omega(\frac{1}{\varepsilon})$ queries.

Indefinite Matrices

• We instead achieve $|\operatorname{tr}(\boldsymbol{A}) - \operatorname{Hutch} + (\boldsymbol{A})| \leq \varepsilon ||\boldsymbol{A}||_*$.

Non-Adaptive Algorithms

- We submit all queries in parallel. \mathbf{x}_2 cannot depend on $\mathbf{A}\mathbf{x}_1$.
- NA-Hutch++: Non-Adaptive variant of Hutch++, still $O(\frac{1}{\epsilon})$
- No Adaptivity Gap

QR Codes & Links for More Details

(b) Hutch++ Full Paper