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Motivation: Road Network Connectivity

©

NYC is adding a new bus line. Where should it go?
Let's add a bus line that maximizes connectivity

© ©

We have an adjacency matrix B € R"*" in memory

©

For each possible new route, build a new (n+ 1) x (n+ 1)
adjacency matrix, and compute the change in connectivity
© We have to compute the connectivity of a graph very quickly
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Concrete Computational Problem

© We have an adjacency matrix B € R"*" in memory

o

© We want to measure the connectivity of the graph:

o Estrada Index = tr(eB)
o Num of Triangles = tr(B3)

©

The trace is the sum of the diagonal of a matrix
Computing B3 takes O(n?) time. slow
Computing B3x = B(B(Bx)) takes O(n?) time. fast

© ©

Can we approximate tr(B3) by computing few
B3X1, SN B3Xk?

Yes we can!

©



1. Introduction
o What problems am | solving?
o Why are these problems interesting?
o How am [ solving them?

2. Trace Estimation (SOSA 2021)

o Prior State-of-the-Art
o When can this be improved?
o New Algorithm: Hutch++
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General Picture: Trace Estimation

© Goal: Estimate trace of d x d matrix A:

d d
tr(A) = Z A; = Z Ai
i=1 i=1

© In Downstream Applications, A is not stored in memory.
© Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(:B3) tr(eB) tr(In(B))

© Goal: Estimate tr(A) by computing Axy, ... Axy

Trace Estimation: Estimate tr(A) with as few Matrix-Vector
products Axq, ..., Axy as possible.

[tr(A) — tr(A)| < etr(A)
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Prior Work:

© Hutchinson’s Estimator: O(E%) products suffice [AT11]
o 2 Lines of MATLAB code
© Lower Bound: Hutchinson's Estimator needs Q(E%) products

[WWZ14]

Our Results:

© Hutch++ Estimator: O(1) products suffice
o 5 Lines of MATLAB code

© Lower Bound: Any estimator needs Q(1) products
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Linear Algebra Review

d eigenvectors eigenvalues eigenvectors

A N UkT
d Ak = Uk I\k

Symmetric A € R4 has A= UAUT

U is a rotation matrix: UTU =1

Eigenvalues \;1 > \o > ... > Ay

||A||2F = Zi,j A?,j = Zi)‘%

tr(A) =32 Aii =32 Ai

Positive Semi-Definite (PSD) A has \; > 0 for all /
o [|Allr = [[All2 < [|A]lx = tr(A)

© Low Rank Approximation:

A = UkA U] = argming, gy« [|A — Bl|F

© © ©

IS
©

© ©

°)
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Hutchinson's Estimator

® If x ~ N (0, 1), then
E[xTAx] = tr(A) Var[xT Ax] = 2||A||%

© Hutchinson's Estimator: Hy(A) := 1 > | xT Ax;

E[H((A)] = tr(A) Var[H,(A)] = || Al

Proof: Hy(A) needs ¢ = O(%) for PSD A

© For PSD A, we have ||Al|r < tr(A), so that

[Hy(A) — tr(A)] < %HA”F (Standard Deviation)
< J; tr(A) ([IAllF < tr(A))
— t(a) (£=0(2))
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Hutchinson's Estimator

For what A is this analysis tight?

© When is the bound ||A||r < tr(A) tight?
© Letv= [)\1 )\,,} be the eigenvalues of PSD A

© When is the bound ||v||2 < ||v]|1 tight?
o Property of norms: ||v||2 = ||v||1 only if v is nearly sparse
o Otherwise ||v|2 < |[v||1

© Hutchinson only requires O(E%) queries if A has a few large

eigenvalues
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Eigenvalue \;(A)
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Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson's for the rest.

. Find a good rank-k approximation A,

. Notice that tr(A) = tr(Ay) + tr(A — Ay)

. Compute tr(Ay) exactly

. Return Hutch++(A) = tr(Ax) + Hy(A — Ay)
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Helping Hutchinson's Estimator
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Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson's for the rest.

1. Find a good rank-k approximation A,

2. Notice that tr(A) = tr(Ay) + tr(A — Ay)

3. Compute tr(Ay) exactly

4. Return Hutch++(A) = tr(A,) + Hy(A — Ay)

If k =¢= 0(L), then [Hutch++(A) — tr(A)| < ctr(A). 9
(\Whitehaard)
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Finding a Good Low-Rank Approximation

Let A, be the best rank-k approximation of A.

Lemma [Sar06, Wool4]

Let § € R¥*O(K) have N(0,1) entries
Let Q = qr(AS)

Let A = AQQT

Then, with high probability

|A— Axllr <2||A— Axllr

We can compute the trace of A, with O(k) queries and O(dk)
space:

tr(A) = tr(AQQT) = tr(QT(AQ))



Hutch++4 Algorithm:
© Input: Number of matrix-vector queries m, matrix A
1. Sample S € R*5 and G € RY*% with i.i.d. A'(0, /) entries
2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 2 tr(G™ (1 — QQT)A(I — QQT)G)

1 function T = hutchplusplus(A, m)

2 - S = 2xrandi(2,size(A,1),m/3);

3- G = 2xrandi(2,size(A,1),m/3);

4- [Q,~] = qr(A%s,0);

5|= G =G - Qx(Q'*G);

6 - T = trace(Q'xAxQ) + 1/size(G,2)*trace(G'*A%G);
7= end

11



When ||A||g = tr(A), Hutch++ is much faster than Hy:

Relative Error
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When

A is not PSD

Hutch++ works great for most matrices:
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Figure: Estimating num of triangles of arXiv Citation Network
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Open Questions

When is adaptivity helpful?

©

© What about inexact oracles? We often approximate f(A)x
with iterative methods. How accurate do these computations
need to be?

© Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

© Memory-limited lower bounds? This is a realistic model for
iterative methods.

14
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