
Hutch++

Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron
Musco (University of Massachusetts Amherst), and David P.
Woodruff (Carnegie Mellon University)



Collaborators

Christopher Musco
(NYU)

Cameron Musco
(UMass. Amherst)

David P. Woodruff
(CMU)

1



Implicit Trace Estimation

Basic problem in linear algebra:
} Given access to a n × n matrix A only through a

Matrix-Vector Multiplication Oracle

x input
===⇒ oracle output

====⇒ Ax

} Goal is to approximate tr(A) =
∑n

i=1 Aii =
∑n

i=1 λi

Main Question: How many matrix-vector multiplication queries
Ax1, . . . ,Axm are required to compute tr(A)?1

1xi can be chosen adaptively, based on the results Ax1, . . . ,Axi−1

2



Background: Matrix-Vector Oracle

Application: Trace of a Function of a Matrix

} Suppose B is the adjacency matrix for graph G. Then
1
6 tr(B3) counts the number of triangles in G.

◦ Computing B3 directly takes O(n3) time
◦ Computing B3x takes O(n2) time

} Other functions of interest: tr(eB), tr(ln(Σ)), etc.
} Computing f(B)x is often much faster than computing f(B)

directly

◦ Especially if we only need very few x vectors

3



Background: Matrix-Vector Oracle

Application: Trace of a Function of a Matrix

} Suppose B is the adjacency matrix for graph G. Then
1
6 tr(B3) counts the number of triangles in G.

◦ Computing B3 directly takes O(n3) time
◦ Computing B3x takes O(n2) time

} Other functions of interest: tr(eB), tr(ln(Σ)), etc.

} Computing f(B)x is often much faster than computing f(B)
directly

◦ Especially if we only need very few x vectors

3



Background: Matrix-Vector Oracle

Application: Trace of a Function of a Matrix

} Suppose B is the adjacency matrix for graph G. Then
1
6 tr(B3) counts the number of triangles in G.

◦ Computing B3 directly takes O(n3) time
◦ Computing B3x takes O(n2) time

} Other functions of interest: tr(eB), tr(ln(Σ)), etc.
} Computing f(B)x is often much faster than computing f(B)

directly
◦ Especially if we only need very few x vectors

3



Background: Matrix-Vector Oracle

Algorithms:

} Krylov Methods, Sketching Methods, Streaming Methods, etc.
} See also: Implicit Matrix Methods, Matrix-Free Methods
} Useful framework for algorithmic lower bounds

◦ Allows us to prove optimality in a very general setting

4



Background: Hutchinson’s Estimator

The classical approach to trace estimation:

Hutchinson 1991, Girard 1987
1. Draw x1, . . . , xm ∈ Rn with i.i.d. uniform {+1,-1} entries
2. Return T̃ = 1

m
∑m

i=1 xᵀ
i Axi

Avron, Toledo 2011, Roosta, Ascher 2015
If m = O( log(1/δ)

ε2 ), then with probability 1 − δ,
|T̃ − tr(A)| ≤ ε∥A∥F

} If A is PSD, then ∥A∥F ≤ tr(A), so that

(1 − ε) tr(A) ≤ T̃ ≤ (1 + ε) tr(A)

5



Background: Hutchinson’s Estimator

The classical approach to trace estimation:

Hutchinson 1991, Girard 1987
1. Draw x1, . . . , xm ∈ Rn with i.i.d. uniform {+1,-1} entries
2. Return T̃ = 1

m
∑m

i=1 xᵀ
i Axi

Avron, Toledo 2011, Roosta, Ascher 2015
If m = O( log(1/δ)

ε2 ), then with probability 1 − δ,
|T̃ − tr(A)| ≤ ε∥A∥F

} If A is PSD, then ∥A∥F ≤ tr(A), so that

(1 − ε) tr(A) ≤ T̃ ≤ (1 + ε) tr(A)

5



Contribution: O(1/ε) vectors is optimal
Theorems

1. For PSD A and m = O( log(1/δ)ε ), with probability 1 − δ,

(1 − ε) tr(A) ≤ Hutch++(A) ≤ (1 + ε) tr(A)

2. For any b-bit precision oracle, Ω̃( 1
εb) possibly adaptive queries

are necessary.
3. For any infinite precision oracle, Ω(1

ε ) non-adaptive queries
are necessary.

For the rest of the talk, A is always PSD.

Hutch++ is adaptive: the choice of xk may depend on
Ax1, . . . ,Axk−1. We also provide a non-adaptive algorithm in our
paper.

6



Contribution: O(1/ε) vectors is optimal
Theorems

1. For PSD A and m = O( log(1/δ)ε ), with probability 1 − δ,

(1 − ε) tr(A) ≤ Hutch++(A) ≤ (1 + ε) tr(A)

2. For any b-bit precision oracle, Ω̃( 1
εb) possibly adaptive queries

are necessary.

3. For any infinite precision oracle, Ω(1
ε ) non-adaptive queries

are necessary.

For the rest of the talk, A is always PSD.

Hutch++ is adaptive: the choice of xk may depend on
Ax1, . . . ,Axk−1. We also provide a non-adaptive algorithm in our
paper.

6



Contribution: O(1/ε) vectors is optimal
Theorems

1. For PSD A and m = O( log(1/δ)ε ), with probability 1 − δ,

(1 − ε) tr(A) ≤ Hutch++(A) ≤ (1 + ε) tr(A)

2. For any b-bit precision oracle, Ω̃( 1
εb) possibly adaptive queries

are necessary.
3. For any infinite precision oracle, Ω(1

ε ) non-adaptive queries
are necessary.

For the rest of the talk, A is always PSD.

Hutch++ is adaptive: the choice of xk may depend on
Ax1, . . . ,Axk−1. We also provide a non-adaptive algorithm in our
paper.

6



Hutchinson’s Estimator
Versus the Top Few Eigenvalues



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≤O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?

} Let v =
[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse
} Hutchinson only requires O( 1

ε2 ) queries if A has a few large
eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?
◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≈O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?
◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues

8



Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with Hutchinson’s Estimator
5. Return Hutch++(A) = tr(Ãk) + T̃

9



Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with Hutchinson’s Estimator
5. Return Hutch++(A) = tr(Ãk) + T̃

9



Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.

Lemma (Sarlos 2006, Woodruff 2014)
Let S ∈ Rn×m have i.i.d. uniform ±1 entries, Q = orth(AS), and
Ãk = AQQᵀ. Then, with probability 1 − δ,

∥A − Ãk∥F ≤ 2∥A − Ak∥F

so long as S has m = O(k + log(1/δ)) columns.

We can compute the trace of Ãk with m queries and O(mn) space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))

10



Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.

Lemma (Sarlos 2006, Woodruff 2014)
Let S ∈ Rn×m have i.i.d. uniform ±1 entries, Q = orth(AS), and
Ãk = AQQᵀ. Then, with probability 1 − δ,

∥A − Ãk∥F ≤ 2∥A − Ak∥F

so long as S has m = O(k + log(1/δ)) columns.

We can compute the trace of Ãk with m queries and O(mn) space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))

10



Complete Analysis

Lemma: ∥A − Ak∥F ≤ 1√
k tr(A)

Proof. Note that λk+1 ≤ 1
k
∑k

i=1 λi ≤ 1
k tr(A).

Then,

∥A − Ak∥2
F =

n∑
i=k+1

λ2
i ≤ λk+1

n∑
i=k+1

λi ≤ (1
k tr(A)) · tr(A)

} Formalizes our earlier intuition
} Replaces the earlier bound ∥A∥F ≤ tr(A)

} Similar to standard compressed sensing result:

For all v ∈ Rd, there exists k-sparse ṽ such that
∥v − ṽ∥2 ≤ 1√

k∥v∥1

11



Complete Analysis

Lemma: ∥A − Ak∥F ≤ 1√
k tr(A)

Proof. Note that λk+1 ≤ 1
k
∑k

i=1 λi ≤ 1
k tr(A). Then,

∥A − Ak∥2
F =

n∑
i=k+1

λ2
i ≤ λk+1

n∑
i=k+1

λi ≤ (1
k tr(A)) · tr(A)

} Formalizes our earlier intuition
} Replaces the earlier bound ∥A∥F ≤ tr(A)

} Similar to standard compressed sensing result:

For all v ∈ Rd, there exists k-sparse ṽ such that
∥v − ṽ∥2 ≤ 1√

k∥v∥1

11



Complete Analysis

Lemma: ∥A − Ak∥F ≤ 1√
k tr(A)

Proof. Note that λk+1 ≤ 1
k
∑k

i=1 λi ≤ 1
k tr(A). Then,

∥A − Ak∥2
F =

n∑
i=k+1

λ2
i ≤ λk+1

n∑
i=k+1

λi ≤ (1
k tr(A)) · tr(A)

} Formalizes our earlier intuition
} Replaces the earlier bound ∥A∥F ≤ tr(A)

} Similar to standard compressed sensing result:

For all v ∈ Rd, there exists k-sparse ṽ such that
∥v − ṽ∥2 ≤ 1√

k∥v∥1

11



Complete Analysis

Using rank-k approximation and ℓ sample for Hutchinson’s.

1. We can only make an error in the Hutchinson’s step:

|tr(A)− Hutch++(A)| = |tr(A − Ãk)− T̃|

2. Guarantees for Hutchinson’s and Low-Rank Approximation:

|tr(A − Ãk)− T̃| ≤ O( 1√
ℓ
)∥A − Ãk∥F ≤ O( 1√

ℓ
) · 2∥A − Ak∥F

3. Use the lemma from the last slide:

|tr(A)− Hutch++(A)| ≤ O( 1√
kℓ) tr(A)

4. If k = ℓ = O(1
ε ), then |tr(A)− Hutch++(A)| ≤ ε tr(A)

12



Complete Analysis

Using rank-k approximation and ℓ sample for Hutchinson’s.

1. We can only make an error in the Hutchinson’s step:

|tr(A)− Hutch++(A)| = |tr(A − Ãk)− T̃|

2. Guarantees for Hutchinson’s and Low-Rank Approximation:

|tr(A − Ãk)− T̃| ≤ O( 1√
ℓ
)∥A − Ãk∥F ≤ O( 1√

ℓ
) · 2∥A − Ak∥F

3. Use the lemma from the last slide:

|tr(A)− Hutch++(A)| ≤ O( 1√
kℓ) tr(A)

4. If k = ℓ = O(1
ε ), then |tr(A)− Hutch++(A)| ≤ ε tr(A)

12



Complete Analysis

Using rank-k approximation and ℓ sample for Hutchinson’s.

1. We can only make an error in the Hutchinson’s step:

|tr(A)− Hutch++(A)| = |tr(A − Ãk)− T̃|

2. Guarantees for Hutchinson’s and Low-Rank Approximation:

|tr(A − Ãk)− T̃| ≤ O( 1√
ℓ
)∥A − Ãk∥F ≤ O( 1√

ℓ
) · 2∥A − Ak∥F

3. Use the lemma from the last slide:

|tr(A)− Hutch++(A)| ≤ O( 1√
kℓ) tr(A)

4. If k = ℓ = O(1
ε ), then |tr(A)− Hutch++(A)| ≤ ε tr(A)

12



Complete Analysis

Using rank-k approximation and ℓ sample for Hutchinson’s.

1. We can only make an error in the Hutchinson’s step:

|tr(A)− Hutch++(A)| = |tr(A − Ãk)− T̃|

2. Guarantees for Hutchinson’s and Low-Rank Approximation:

|tr(A − Ãk)− T̃| ≤ O( 1√
ℓ
)∥A − Ãk∥F ≤ O( 1√

ℓ
) · 2∥A − Ak∥F

3. Use the lemma from the last slide:

|tr(A)− Hutch++(A)| ≤ O( 1√
kℓ) tr(A)

4. If k = ℓ = O(1
ε ), then |tr(A)− Hutch++(A)| ≤ ε tr(A)

12



Complete Analysis

Using rank-k approximation and ℓ sample for Hutchinson’s.

1. We can only make an error in the Hutchinson’s step:

|tr(A)− Hutch++(A)| = |tr(A − Ãk)− T̃|

2. Guarantees for Hutchinson’s and Low-Rank Approximation:

|tr(A − Ãk)− T̃| ≤ O( 1√
ℓ
)∥A − Ãk∥F ≤ O( 1√

ℓ
) · 2∥A − Ak∥F

3. Use the lemma from the last slide:

|tr(A)− Hutch++(A)| ≤ O( 1√
kℓ) tr(A)

4. If k = ℓ = O(1
ε ), then |tr(A)− Hutch++(A)| ≤ ε tr(A)

12



Lower Bound:
Communication Complexity



Communication Complexity

} Really rich area of theoretical computing

Gap-Hamming Problem
Let Alice and Bob each have vectors s, t ∈ {+1,−1}n. Using as
few bits of communication as possible, they must decide if

⟨s, t⟩ ≥
√

n or if ⟨s, t⟩ ≤ −
√

n

Chakrabarti, Regev 2012
Any (possibly adaptive) protocol between Alice and Bob must
use Ω(n) bits to solve the Gap-Hamming problem with
probability ≥ 2

3 .

14



A Reduction from Gap-Hamming

} Suppose the Matrix-Vector Oracle for A only accepts queries
with entries that use b bits of precision

◦ (e.g. the entries of x are integers between −2b and 2b).

Theorem
Any (possibly adaptive) algorithm that estimates tr(A) to relative
error ε with probability ≥ 2

3 must use Ω( 1
ε(b+log(1/ε))) queries.

Proof Idea: Simulate a m-query trace-estimation algorithm to solve
a n-bit Gap-Hamming problem

15



A Reduction to Trace Estimation

Let Z = S + T and A = ZTZ, so that
tr(A) = ∥Z∥2

F = ∥s + t∥2
2 = 2n − 2⟨s, t⟩

If Alice and Bob can estimate tr(A) to error (1 ± 1√n), they can
solve the Gap-Hamming problem (so ε = 1√n).

16



A Reduction to Trace Estimation

Let Z = S + T and A = ZTZ, so that
tr(A) = ∥Z∥2

F = ∥s + t∥2
2 = 2n − 2⟨s, t⟩

If Alice and Bob can estimate tr(A) to error (1 ± 1√n), they can
solve the Gap-Hamming problem (so ε = 1√n).

16



A Reduction to Trace Estimation

Let Z = S + T and A = ZTZ, so that
tr(A) = ∥Z∥2

F = ∥s + t∥2
2 = 2n − 2⟨s, t⟩

If Alice and Bob can estimate tr(A) to error (1 ± 1√n), they can
solve the Gap-Hamming problem (so ε = 1√n). 16



A Reduction to Trace Estimation

} For any precision b vector x, Alice and Bob can compute Ax
with O(

√
n(log(n) + b)) bits of communication

} They can simulate any m-query trace estimation algorithm
with O(m ·

√
n(log(n) + b)) bits of communication

} Gap-Hamming Lower bound: m ≥ Ω( n√n(log(n)+b))

} Substitute ε = 1√n : m ≥ Ω( 1
ε(b+log(1/ε)))

17



A Reduction to Trace Estimation

} For any precision b vector x, Alice and Bob can compute Ax
with O(

√
n(log(n) + b)) bits of communication

} They can simulate any m-query trace estimation algorithm
with O(m ·

√
n(log(n) + b)) bits of communication

} Gap-Hamming Lower bound: m ≥ Ω( n√n(log(n)+b))

} Substitute ε = 1√n : m ≥ Ω( 1
ε(b+log(1/ε)))

17



A Reduction to Trace Estimation

} For any precision b vector x, Alice and Bob can compute Ax
with O(

√
n(log(n) + b)) bits of communication

} They can simulate any m-query trace estimation algorithm
with O(m ·

√
n(log(n) + b)) bits of communication

} Gap-Hamming Lower bound: m ≥ Ω( n√n(log(n)+b))

} Substitute ε = 1√n : m ≥ Ω( 1
ε(b+log(1/ε)))

17



A Reduction to Trace Estimation

} For any precision b vector x, Alice and Bob can compute Ax
with O(

√
n(log(n) + b)) bits of communication

} They can simulate any m-query trace estimation algorithm
with O(m ·

√
n(log(n) + b)) bits of communication

} Gap-Hamming Lower bound: m ≥ Ω( n√n(log(n)+b))

} Substitute ε = 1√n : m ≥ Ω( 1
ε(b+log(1/ε)))

17



Lower Bound:
Statistical Hypothesis Testing



Statistical Hypothesis Testing

Design distributions P0 and P1 over PSD matrices such that

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No estimator can distinguish P0 from P1 with Ω(1
ε ) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ Any estimator that correctly guesses i with probability ≥ 3

4
must use Ω( 1

ε ) queries

The design of P0 and P1 should reflect what structure makes trace
estimation hard!

19



Statistical Hypothesis Testing

Design distributions P0 and P1 over PSD matrices such that

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No estimator can distinguish P0 from P1 with Ω(1
ε ) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ Any estimator that correctly guesses i with probability ≥ 3

4
must use Ω( 1

ε ) queries

The design of P0 and P1 should reflect what structure makes trace
estimation hard!

19



Statistical Hypothesis Testing

Design distributions P0 and P1 over PSD matrices such that

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No estimator can distinguish P0 from P1 with Ω(1
ε ) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ Any estimator that correctly guesses i with probability ≥ 3

4
must use Ω( 1

ε ) queries

The design of P0 and P1 should reflect what structure makes trace
estimation hard!

19



Designing a Hard Instance

What would the hardest input for Hutch++ be?

} Hutch++ only makes errors with Hutchinson’s estimator on
tr(A − Ãk)

} For what A would Hutchinson’s estimator have difficulty
estimating tr(A − Ak)?

◦ Hutchinson’s estimator needs many samples when A − Ak has
concentrated eigenvalues

} A has k = O(1
ε ) large eigenvalues. The rest are zero.

20



Designing a Hard Instance

What would the hardest input for Hutch++ be?

} Hutch++ only makes errors with Hutchinson’s estimator on
tr(A − Ãk)

} For what A would Hutchinson’s estimator have difficulty
estimating tr(A − Ak)?

◦ Hutchinson’s estimator needs many samples when A − Ak has
concentrated eigenvalues

} A has k = O(1
ε ) large eigenvalues. The rest are zero.

20



Designing a Hard Instance

What would the hardest input for Hutch++ be?

} Hutch++ only makes errors with Hutchinson’s estimator on
tr(A − Ãk)

} For what A would Hutchinson’s estimator have difficulty
estimating tr(A − Ak)?

◦ Hutchinson’s estimator needs many samples when A − Ak has
concentrated eigenvalues

} A has k = O(1
ε ) large eigenvalues. The rest are zero.

20



Designing a Hard Instance

What would the hardest input for Hutch++ be?

} Hutch++ only makes errors with Hutchinson’s estimator on
tr(A − Ãk)

} For what A would Hutchinson’s estimator have difficulty
estimating tr(A − Ak)?

◦ Hutchinson’s estimator needs many samples when A − Ak has
concentrated eigenvalues

} A has k = O(1
ε ) large eigenvalues. The rest are zero.

20



Designing a Hard Instance

What would the hardest input for Hutch++ be?

} Hutch++ only makes errors with Hutchinson’s estimator on
tr(A − Ãk)

} For what A would Hutchinson’s estimator have difficulty
estimating tr(A − Ak)?

◦ Hutchinson’s estimator needs many samples when A − Ak has
concentrated eigenvalues

} A has k = O(1
ε ) large eigenvalues. The rest are zero. 20



Designing a Hard Instance

Formally, for large enough integer d,

P0 A = GTG for G ∈ Rd×( 1
ε
) Gaussian

P1 A = GTG for G ∈ Rd×( 1
ε
+1) Gaussian

21



Experiments



Synthetic Experiments

Results on synthetic matrix A with spectrum λi = i−c for different
values of c:

23



Non-PSD Experiments

Hutch++ works well empirically for many non-PSD matrices.

Let B be the (indefinite) adjacency matrix of an undirected graph
G, 1

6 tr(B3) is exactly equal to the number of triangles in G.

Figure: A = B3 for arXiv.org citation network and Wikipedia voting
network.

24



Open Questions

} In progress: Lower bounds for e.g. tr(A3), tr(eA), tr(A−1)

} What about inexact oracles? We often approximate f(A)x
with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

25



THANK
YOU

Code available at
github.com/RaphaelArkadyMeyerNYU/hutchplusplus

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

