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Implicit Trace Estimation

Basic problem in linear algebra:
} Given access to a n × n matrix A only through a

Matrix-Vector Multiplication Oracle

x input
===⇒ oracle output

====⇒ Ax

} Goal is to approximate tr(A) =
∑n

i=1 Aii =
∑n

i=1 λi

Main Question: How many matrix-vector multiplication queries
Ax1, . . . ,Axm are required to compute tr(A)?1

1xi can be chosen adaptively, based on the results Ax1, . . . ,Axi−1
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Background: Matrix-Vector Oracle

Application: Trace of a Function of a Matrix

} Suppose B is the adjacency matrix for graph G. Then
1
6 tr(B3) counts the number of triangles in G.

◦ Computing B3 directly takes O(n3) time
◦ Computing B3x takes O(n2) time

} Other functions of interest: tr(eB), tr(ln(Σ)), etc.
} Computing f(B)x is often much faster than computing f(B)

directly

◦ Especially if we only need very few x vectors
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Background: Matrix-Vector Oracle

Algorithms:

} Krylov Methods, Sketching Methods, Streaming Methods, etc.
} See also: Implicit Matrix Methods, Matrix-Free Methods
} Useful framework for algorithmic lower bounds

◦ Allows us to prove optimality in a very general setting
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Background: Hutchinson’s Estimator

The classical approach to trace estimation:

Hutchinson 1991, Girard 1987
1. Draw x1, . . . , xm ∈ Rn with i.i.d. uniform {+1,-1} entries
2. Return T̃ = 1

m
∑m

i=1 xᵀ
i Axi

Avron, Toledo 2011, Roosta, Ascher 2015
If m = O( log(1/δ)

ε2 ), then with probability 1 − δ,
|T̃ − tr(A)| ≤ ε∥A∥F

} If A is PSD, then ∥A∥F ≤ tr(A), so that

(1 − ε) tr(A) ≤ T̃ ≤ (1 + ε) tr(A)
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Contribution: O(1/ε) vectors is optimal
Theorems

1. For PSD A and m = O( log(1/δ)ε ), with probability 1 − δ,

(1 − ε) tr(A) ≤ Hutch++(A) ≤ (1 + ε) tr(A)

2. For any b-bit precision oracle, Ω̃( 1
εb) possibly adaptive queries

are necessary.
3. For any infinite precision oracle, Ω(1

ε ) non-adaptive queries
are necessary.

For the rest of the talk, A is always PSD.

Hutch++ is adaptive: the choice of xk may depend on
Ax1, . . . ,Axk−1. We also provide a non-adaptive algorithm in our
paper.
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Hutchinson’s Estimator
Versus the Top Few Eigenvalues



Hutchinson Analysis

Let’s return to the result for Hutchinson’s Estimator:

|T̃ − tr(A)|≤O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues
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Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with Hutchinson’s Estimator
5. Return Hutch++(A) = tr(Ãk) + T̃
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Finding a Good Low-Rank Approximation

Let Ak be the best rank-k approximation of A.

Lemma (Sarlos 2006, Woodruff 2014)
Let S ∈ Rn×m have i.i.d. uniform ±1 entries, Q = orth(AS), and
Ãk = AQQᵀ. Then, with probability 1 − δ,

∥A − Ãk∥F ≤ 2∥A − Ak∥F

so long as S has m = O(k + log(1/δ)) columns.

We can compute the trace of Ãk with m queries and O(mn) space:

tr(Ãk) = tr(AQQᵀ) = tr(Qᵀ(AQ))
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Complete Analysis

Lemma: ∥A − Ak∥F ≤ 1√
k tr(A)

Proof. Note that λk+1 ≤ 1
k
∑k

i=1 λi ≤ 1
k tr(A).

Then,

∥A − Ak∥2
F =

n∑
i=k+1

λ2
i ≤ λk+1

n∑
i=k+1

λi ≤ (1
k tr(A)) · tr(A)

} Formalizes our earlier intuition
} Replaces the earlier bound ∥A∥F ≤ tr(A)

} Similar to standard compressed sensing result:

For all v ∈ Rd, there exists k-sparse ṽ such that
∥v − ṽ∥2 ≤ 1√

k∥v∥1
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Complete Analysis

Using rank-k approximation and ℓ sample for Hutchinson’s.

1. We can only make an error in the Hutchinson’s step:

|tr(A)− Hutch++(A)| = |tr(A − Ãk)− T̃|

2. Guarantees for Hutchinson’s and Low-Rank Approximation:

|tr(A − Ãk)− T̃| ≤ O( 1√
ℓ
)∥A − Ãk∥F ≤ O( 1√

ℓ
) · 2∥A − Ak∥F

3. Use the lemma from the last slide:

|tr(A)− Hutch++(A)| ≤ O( 1√
kℓ) tr(A)

4. If k = ℓ = O(1
ε ), then |tr(A)− Hutch++(A)| ≤ ε tr(A)
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Lower Bound:
Communication Complexity



Communication Complexity

} Really rich area of theoretical computing

Gap-Hamming Problem
Let Alice and Bob each have vectors s, t ∈ {+1,−1}n. Using as
few bits of communication as possible, they must decide if

⟨s, t⟩ ≥
√

n or if ⟨s, t⟩ ≤ −
√

n

Chakrabarti, Regev 2012
Any (possibly adaptive) protocol between Alice and Bob must
use Ω(n) bits to solve the Gap-Hamming problem with
probability ≥ 2

3 .
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A Reduction from Gap-Hamming

} Suppose the Matrix-Vector Oracle for A only accepts queries
with entries that use b bits of precision

◦ (e.g. the entries of x are integers between −2b and 2b).

Theorem
Any (possibly adaptive) algorithm that estimates tr(A) to relative
error ε with probability ≥ 2

3 must use Ω( 1
ε(b+log(1/ε))) queries.

Proof Idea: Simulate a m-query trace-estimation algorithm to solve
a n-bit Gap-Hamming problem
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A Reduction to Trace Estimation

Let Z = S + T and A = ZTZ, so that
tr(A) = ∥Z∥2

F = ∥s + t∥2
2 = 2n − 2⟨s, t⟩

If Alice and Bob can estimate tr(A) to error (1 ± 1√n), they can
solve the Gap-Hamming problem (so ε = 1√n).
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A Reduction to Trace Estimation

} For any precision b vector x, Alice and Bob can compute Ax
with O(

√
n(log(n) + b)) bits of communication

} They can simulate any m-query trace estimation algorithm
with O(m ·

√
n(log(n) + b)) bits of communication

} Gap-Hamming Lower bound: m ≥ Ω( n√n(log(n)+b))

} Substitute ε = 1√n : m ≥ Ω( 1
ε(b+log(1/ε)))
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Lower Bound:
Statistical Hypothesis Testing



Statistical Hypothesis Testing

Design distributions P0 and P1 over PSD matrices such that

1. A trace estimator can distinguish P0 from P1
◦ If A0 ∼ P0 and A1 ∼ P1
◦ With high probability, tr(A0) ≤ (1 − 2ε) tr(A1)

2. No estimator can distinguish P0 from P1 with Ω(1
ε ) queries

◦ Nature samples i ∼ {0, 1}, and A ∼ Pi
◦ Any estimator that correctly guesses i with probability ≥ 3

4
must use Ω( 1

ε ) queries

The design of P0 and P1 should reflect what structure makes trace
estimation hard!

19
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Designing a Hard Instance

What would the hardest input for Hutch++ be?

} Hutch++ only makes errors with Hutchinson’s estimator on
tr(A − Ãk)

} For what A would Hutchinson’s estimator have difficulty
estimating tr(A − Ak)?

◦ Hutchinson’s estimator needs many samples when A − Ak has
concentrated eigenvalues

} A has k = O(1
ε ) large eigenvalues. The rest are zero.
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Designing a Hard Instance

Formally, for large enough integer d,

P0 A = GTG for G ∈ Rd×( 1
ε
) Gaussian

P1 A = GTG for G ∈ Rd×( 1
ε
+1) Gaussian
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Experiments



Synthetic Experiments

Results on synthetic matrix A with spectrum λi = i−c for different
values of c:
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Non-PSD Experiments

Hutch++ works well empirically for many non-PSD matrices.

Let B be the (indefinite) adjacency matrix of an undirected graph
G, 1

6 tr(B3) is exactly equal to the number of triangles in G.

Figure: A = B3 for arXiv.org citation network and Wikipedia voting
network.
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Open Questions

} In progress: Lower bounds for e.g. tr(A3), tr(eA), tr(A−1)

} What about inexact oracles? We often approximate f(A)x
with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.
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THANK
YOU

Code available at
github.com/RaphaelArkadyMeyerNYU/hutchplusplus

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

