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Trace Estimation

} Goal: Estimate trace of n × n matrix A:

tr(A) =
n∑

i=1
Aii =

n∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time, which is too slow

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly
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Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

} Given access to a n × n matrix A only through a
Matrix-Vector Multiplication Oracle

x input
===⇒ oracle output

====⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Ax1, . . . ,Axm as possible.

(1 − ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A)
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3 Core Contributions

For PSD matrix trace estimation,

1. Hutch++ algorithm, which uses Õ(1
ε ) matrix-vector products.

◦ Improves prior rate of Õ( 1
ε2 )

◦ Empirically works well

2. All adaptive algorithms with finite-precision oracles use
Ω( 1

ε log(1/ε)) queries.
3. All nonadaptive algorithms with infinite-precision oracles use

Ω(1
ε ) queries.

1Õ notation only hide logarithmic dependence on the failure probability.
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Hutchinson’s Estimator

The classical approach to trace estimation:

Hutchinson 1991, Girard 1987
1. Draw x1, . . . , xm ∈ Rn with i.i.d. uniform {+1,-1} entries
2. Return T̃ = 1

m
∑m

i=1 xᵀ
i Axi

Avron, Toledo 2011, Roosta, Ascher 2015
With probability 1 − δ,

|T̃ − tr(A)| ≤ Õ( 1√m)∥A∥F

5



Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≤O( 1√m)∥A∥F

≤O( 1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O( 1
ε2 ) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O( 1
ε2 ) queries if A has a few large

eigenvalues
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Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
5. Return Hutch++(A) = tr(Ãk) + T̃
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Hutch++

} Lemma: ∥A − Ãk∥F ≤ 2√
k tr(A)

◦ Replaces earlier bound ∥A∥F ≤ tr(A)

◦ For all v, there exists k-sparse ṽ such that

∥v − ṽ∥2 ≤ 1√
k∥v∥1

} Final Theorem:
◦ Using rank-k approximation and m samples in Hutchinson’s
◦ |tr(A)− Hutch++(A)| ≤ O( 1√

km ) tr(A)

◦ Set k = m = Õ( 1
ε )
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Implimentation

} Input: Number of matrix-vector queries m

1. Sample S ∈ Rd×m
3 and G ∈ Rd×m

3 with i.i.d. {+1,−1} entries
2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 3

m tr(GT(I − QQᵀ)A(I − QQᵀ)G)
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If you want to learn more

25 Minute Version of this Talk: More Details

} Full proof of Hutch++ Correctness
} Intuitions for both lower bounds
} Discussion of some experiments

In the full paper: Even more details

} Non-Adaptive Algorithm
} Minor Optimizations
} Full Proofs
} Richer discussion of experiments

Code: github.com/RaphaelArkadyMeyerNYU/hutchplusplus
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Open Questions

} In progress: Lower bounds for e.g. tr(A3), tr(eA), tr(A−1)

} What about inexact oracles? We often approximate f(A)x
with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.
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THANK
YOU

Code available at
github.com/RaphaelArkadyMeyerNYU/hutchplusplus

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

