
Hutch++

Optimal Stochastic Trace Estimation

Raphael A. Meyer (New York University)

With Christopher Musco (New York University), Cameron
Musco (University of Massachusetts Amherst), and David P.
Woodruff (Carnegie Mellon University)

Collaborators

Christopher Musco
(NYU)

Cameron Musco
(UMass. Amherst)

David P. Woodruff
(CMU)

1

Trace Estimation

} Goal: Estimate trace of n × n matrix A:

tr(A) =
n∑

i=1
Aii =

n∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time, which is too slow

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly

2

Trace Estimation

} Goal: Estimate trace of n × n matrix A:

tr(A) =
n∑

i=1
Aii =

n∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time, which is too slow

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly

2

Trace Estimation

} Goal: Estimate trace of n × n matrix A:

tr(A) =
n∑

i=1
Aii =

n∑
i=1

λi

} In Downstream Applications, A is not stored in memory.
} Instead, B is in memory and A = f(B):

No. Triangles Estrada Index Log-Determinant
tr(1

6B3) tr(eB) tr(ln(B))

} Computing A = 1
6B3 takes O(n3) time, which is too slow

} Computing Ax = 1
6B(B(Bx)) takes O(n2) time

} If A = f(B), then we can often compute Ax quickly

2

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

} Given access to a n × n matrix A only through a
Matrix-Vector Multiplication Oracle

x input
===⇒ oracle output

====⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Ax1, . . . ,Axm as possible.

(1 − ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A)

3

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

} Given access to a n × n matrix A only through a
Matrix-Vector Multiplication Oracle

x input
===⇒ oracle output

====⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Ax1, . . . ,Axm as possible.

(1 − ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A)

3

Matrix-Vector Oracle Model

Idea: Matrix-Vector Product as a Computational Primitive

} Given access to a n × n matrix A only through a
Matrix-Vector Multiplication Oracle

x input
===⇒ oracle output

====⇒ Ax

} e.g. Krylov Methods, Sketching, Streaming, . . .

Implicit Matrix Trace Estimation: Estimate tr(A) with as few
Matrix-Vector products Ax1, . . . ,Axm as possible.

(1 − ε) tr(A) ≤ t̃r(A) ≤ (1 + ε) tr(A)

3

3 Core Contributions

For PSD matrix trace estimation,

1. Hutch++ algorithm, which uses Õ(1
ε) matrix-vector products.

◦ Improves prior rate of Õ(1
ε2)

◦ Empirically works well

2. All adaptive algorithms with finite-precision oracles use
Ω(1

ε log(1/ε)) queries.
3. All nonadaptive algorithms with infinite-precision oracles use

Ω(1
ε) queries.

1Õ notation only hide logarithmic dependence on the failure probability.

4

3 Core Contributions

For PSD matrix trace estimation,

1. Hutch++ algorithm, which uses Õ(1
ε) matrix-vector products.

◦ Improves prior rate of Õ(1
ε2)

◦ Empirically works well

2. All adaptive algorithms with finite-precision oracles use
Ω(1

ε log(1/ε)) queries.
3. All nonadaptive algorithms with infinite-precision oracles use

Ω(1
ε) queries.

1Õ notation only hide logarithmic dependence on the failure probability.

4

Hutchinson’s Estimator

The classical approach to trace estimation:

Hutchinson 1991, Girard 1987
1. Draw x1, . . . , xm ∈ Rn with i.i.d. uniform {+1,-1} entries
2. Return T̃ = 1

m
∑m

i=1 xᵀ
i Axi

Avron, Toledo 2011, Roosta, Ascher 2015
With probability 1 − δ,

|T̃ − tr(A)| ≤ Õ(1√m)∥A∥F

5

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≤O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≤O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≤O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≤O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≈O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≈O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?

} Let v =
[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≈O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≈O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?

◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse
} Hutchinson only requires O(1

ε2) queries if A has a few large
eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≈O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?
◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Hutchinson Analysis

For PSD A, ∥A∥F ≤ tr(A), so that:

|T̃ − tr(A)|≈O(1√m)∥A∥F

≤O(1√m) tr(A)

= ε tr(A)

} When does Hutchinson’s Estimator truly need O(1
ε2) queries?

} When is the bound ∥A∥F ≤ tr(A) tight?
} Let v =

[
λ1 . . . λn

]
be the eigenvalues of PSD A

} When is the bound ∥v∥2 ≤ ∥v∥1 tight?
◦ Property of norms: ∥v∥2 ≈ ∥v∥1 only if v is nearly sparse

} Hutchinson only requires O(1
ε2) queries if A has a few large

eigenvalues

6

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
5. Return Hutch++(A) = tr(Ãk) + T̃

7

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
5. Return Hutch++(A) = tr(Ãk) + T̃

7

Helping Hutchinson’s Estimator

Idea: Explicitly estimate the top few eigenvalues of A. Use
Hutchinson’s for the rest.

1. Find a good rank-k approximation Ãk
2. Notice that tr(A) = tr(Ãk) + tr(A − Ãk)

3. Compute tr(Ãk) exactly
4. Compute T̃ ≈ tr(A − Ãk) with m steps of Hutchinson’s
5. Return Hutch++(A) = tr(Ãk) + T̃

7

Hutch++

} Lemma: ∥A − Ãk∥F ≤ 2√
k tr(A)

◦ Replaces earlier bound ∥A∥F ≤ tr(A)

◦ For all v, there exists k-sparse ṽ such that

∥v − ṽ∥2 ≤ 1√
k∥v∥1

} Final Theorem:
◦ Using rank-k approximation and m samples in Hutchinson’s
◦ |tr(A)− Hutch++(A)| ≤ O(1√

km) tr(A)

◦ Set k = m = Õ(1
ε)

8

Implimentation

} Input: Number of matrix-vector queries m

1. Sample S ∈ Rd×m
3 and G ∈ Rd×m

3 with i.i.d. {+1,−1} entries
2. Compute Q = qr(AS)
3. Return tr(QTAQ) + 3

m tr(GT(I − QQᵀ)A(I − QQᵀ)G)

9

If you want to learn more

25 Minute Version of this Talk: More Details

} Full proof of Hutch++ Correctness
} Intuitions for both lower bounds
} Discussion of some experiments

In the full paper: Even more details

} Non-Adaptive Algorithm
} Minor Optimizations
} Full Proofs
} Richer discussion of experiments

Code: github.com/RaphaelArkadyMeyerNYU/hutchplusplus

10

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

Open Questions

} In progress: Lower bounds for e.g. tr(A3), tr(eA), tr(A−1)

} What about inexact oracles? We often approximate f(A)x
with iterative methods. How accurate do these computations
need to be?

} Extend to include row/column sampling? This would
encapsulate e.g. SGD/SCD.

11

THANK
YOU

Code available at
github.com/RaphaelArkadyMeyerNYU/hutchplusplus

https://github.com/RaphaelArkadyMeyerNYU/hutchplusplus

