Optimality Implies Kernel Sum Classifiers are Statistically Efficient

Introduction and Optimization

Background

Statistical Learning Theory + Optimization

= Generalization proofs typically state that all feasible estimators generalize well

= This includes low-accuracy estimators we do not care about
= Proofs often make stringent assumptions on the data distribution

= We combine Optimization and Statistical Learning Theory to prove that
optimal estimators generalize well

= We justify common assumptions made in the Multiple Kernel Learning literature

Multiple Kernel Learning

= Givenm kernels k1, ..., ky, and dataset (x1, 1), - . ., (Xn, yn)

= An estimator picks 4, ...,0,, and o
= Define combined kernel kg (-, -) = > /% O¢ki(-, )
* Predict with y(x| K., &) = Y1 ik (x, %;)

Our Approach

= Binary Classification: y; € {—1,+1}
= o is optimal in a Support Vector Machine
= Control generalization error of k., with the error of ky, ..., knp
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Main Theorem and Context

Lemma of One Kernel

Let a be the dual-optimal vector for labeled kernel matrix K. Then, by combining
the Stationarity, Complementary Slackness, and Dual Feasibility KKT conditions, we find

that i
a1 = aTKa

Theorem of Two Kernels: Adding Kernels Reduces Complexity

Let a; and ap be the dual-optimal vectors for labeled kernel matrices NIN{l and K. Let
a9 be the dual-optimal vector for labeled kernel matrix K119 := K; + K. Then,
following from the prior lemma, the optimality of a9, and some algebra, we have
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af  Kijaiig < g(aIKlal + ad Koa)

Theorem of Many Kernels: Adding Many Kernels Greatly Reduces Complexity

~

Let auy, .. ., oy DE the dual-optimal vectors for labeled kernel matrices INQ,N. L Ko,
Let a, be the dual optimal vector for labeled kernel matrix K. := > iy K. Then,
by repeatedly applying the prior lemma, we find
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Furthermore, if we assume that atTK’tat < BZ then

a%fi’zaz < 3m~ logs(3/2) B2

Template of Prior Works
Given: Kl KQ - e Km 6 (823
Combine: K. :=>". Htkt/
Assume: Assume agkzaz < C? for all o,
Rademacher Complexity
Then: Estimator y(x|K,, a, ) generalizes well
Our Optimality Assumption
Given: Kl KQ s Km IN{E
Dual SVNI
Optimize: o1 0o R o o o
Assume: For allt = 1,2,...,m,
Assume o] K;a; < B?
KKT Conditions
Then al K o, < 3m~"°°B?
Rademacher Complexity
Then: Estimator y(x| K, , o) generalizes well

Conclusions

Learning Theory Results

Support Vector Machines Styles

= \WWe consider the standard SVM and a L2-penalized SVM for nonseparable data:
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(a) Primal SVM Problem (b) Dual SVM Problem

Figure 1. Primal and Dual SVM Problems. The L2 penalties are in gray.

= We prove statistical efficiency for standard SVM and C' = % inthe L2-SVM

Ways to Combine Kernels Together

= Our core theorem complements existing Rademacher Complexity proofs
= Generalization error is bounded by the Rademacher Complexity R (F):
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= Different proofs consider different ways to combine kernels:

1. Kernel Sums: If all 8; = 1, then
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2. Kernel Subsets: Ifall §; € {0,1}, then

[ BRm"?% . \/In(m)
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3. Convex Combinations™: If we have 6; € {0} U {%, 1} and > %, 0 = 1,then

A B BRm+/In(m)
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Table of Constants

Variable  Meaning
n | Number of Samples
1, 7| Index of a Sample
m | Number of Kernels
t | Index of a Kernel
K | Labeled Kernel Matrix (i.e. [K]; j := y;yjk(x;, x;))
o | Dual Solution Vector for SVM with K
B? | Upper Bound for all o] Koy

R? Upper Bound for all ki(x;,x;) = ||é(x;)]|3




